Skip to main content
Log in

A heuristic threshold policy for fault detection and diagnosis in multivariate statistical quality control environments

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a heuristic threshold policy is developed to detect and classify the states of a multivariate quality control system. In this approach, a probability measure called belief is first assigned to the quality characteristics and then the posterior belief of out-of-control characteristics is updated by taking new observations and using a Bayesian rule. If the posterior belief is more than a decision threshold, called minimum acceptable belief determined using a heuristic threshold policy, then the corresponding quality characteristic is classified out-of-control. Besides using a different approach, the main difference between the current research and previous works is that the current work develops a novel heuristic threshold policy, in which in order to save sampling cost and time or when these factors are constrained, the number of the data gathering stages is assumed limited. A numerical example along with some simulation experiments is given at the end to demonstrate the application of the proposed methodology and to evaluate its performances in different scenarios of mean shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams JD, Woodall WH, Birch JB, Sullivan JH (2006) Distribution of Hotelling’s T 2 statistic based on the successive differences estimator. J Qual Technol 38:217–229

    Google Scholar 

  2. Niaki STA, Abbasi B (2005) Fault diagnosis in multivariate control charts using artificial neural networks. Qual Reliab Eng Int 21:825–840

    Article  Google Scholar 

  3. Niaki STA, Ostadsharif-Memar A (2009) A new statistical process control method to monitor and diagnose bivariate normal mean vectors and covariance matrices simultaneously. Int J Adv Manuf Technol 43:964–981

    Article  Google Scholar 

  4. Kuo Y (2006) Optimal adaptive control policy for joint machine maintenance and product quality control. Eur J Oper Res 171:586–597

    Article  MATH  Google Scholar 

  5. Fallahnezhad MS, Niaki STA (2009) A Bayesian inference and stochastic dynamic programming approach to determine the best binomial distribution. Commun Stat Theory Methods 38:2379–2397

    Article  MathSciNet  Google Scholar 

  6. Eshragh-J A, Modarres M (2001) A new approach to distribution fitting: decision on beliefs. Proceedings of the 53rd ISI Session, Seoul, Korea.

  7. Monfared MAS, Ranaiefar F (2007) Further analysis and developments of the Eshragh–Modarres (E–M) algorithm on statistical estimation. Scientia Iranica 14:425–434

    Google Scholar 

  8. Fallahnezhad MS, Niaki STA (2011) A multi-stage two-machines replacement strategy using mixture models, Bayesian inference and stochastic dynamic programming. Commun Stat Theory Methods 40:702–725

    Article  MathSciNet  Google Scholar 

  9. Niaki STA, Fallahnezhad MS (2009) Designing an optimum acceptance plan using Bayesian inference and stochastic dynamic programming. Scientia Iranica 16:19–25

    Google Scholar 

  10. Fallahnezhad MS, Niaki STA, Eshragh-Jahromi AH (2007) A one-stage two-achines replacement strategy based on the Bayesian inference method. J Ind Syst Eng 1:235–250

    Google Scholar 

  11. Makis V (2009) Multivariate Bayesian process control for a finite production run. Eur J Oper Res 194:795–806

    Article  MathSciNet  MATH  Google Scholar 

  12. Niaki STA, Fallahnezhad MS (2009) A new control chart to monitor mean-shifts of bi-variate quality control processes. Iran J Oper Res 1:85–95

    Google Scholar 

  13. Niaki STA, Fallahnezhad MS (2009) Decision-making in detecting and diagnosing faults in multivariate statistical quality control environments. Int J Adv Manuf Technol 42:713–724

    Article  Google Scholar 

  14. Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate EWMA control chart. Technometrics 34:46–53

    Article  MATH  Google Scholar 

  15. Fasso A (1999) One-sided MEWMA control charts. Commun Stat Theory Methods 28:381–401

    MATH  Google Scholar 

  16. Yeh AB, Lin DKJ, Zhou H, Venkataramani C (2003) A multivariate exponentially weighted moving average control chart for monitoring process variability. J Appl Stat 30:507–536

    Article  MathSciNet  MATH  Google Scholar 

  17. Pignatiello JJ, Runger GC (1990) Comparisons of multivariate CUSUM charts. J Qual Technol 22:173–186

    Google Scholar 

  18. Bersimis S, Psarakis S, Panaretos J (2007) Multivariate statistical process control charts: an overview. Qual Reliab Eng Int 23:517–543

    Article  Google Scholar 

  19. Mason RL, Tracy ND, Young JC (1995) Decomposition of T 2 for multivariate control chart interpretation. J Qual Technol 27:99–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Taghi Akhavan Niaki.

Appendices

Appendix 1: Conditional mean and variance of the variables

Conditional mean of variables gr and sm can be evaluated using the following equation.

$$ \left( {{\mu_{\mathrm{sm}}},{\mu_{\mathrm{gr}}}\left| {{{{\left( {\mu_j } \right)}}_{{j\ne \mathrm{gr}\text{,}\mathrm{sm}}}}} \right.} \right)=\left( {{\mu_{\mathrm{sm}}},{\mu_{\mathrm{gr}}}} \right)+{\bf b}_{{\bf 2}}^{\prime}\left( {{{{\left( {{{{\bf X}}_{{\bf kj}}}} \right)}}_{{j\ne \mathrm{gr},\mathrm{sm}}}}-{{{\left( {{{\varvec{\mu}}_{{\bf j}}}} \right)}}_{{j\ne \mathrm{gr}\text{,}\mathrm{sm}}}}} \right) $$
(A1.1)

Where,

$$ \begin{array}{*{20}{c}} {\mathbf{b}_{2}^{\prime }={{\Sigma }_{{\mathbf{xX}}}}\Sigma _{{\mathbf{XX}}}^{{-1}}\,\text{and}} \hfill \\ {\Sigma =\left[ {\begin{array}{*{20}{c}} {{{\Sigma }_{{\mathbf{XX}}}}} \hfill & {{{\Sigma }_{{\mathbf{xX}}}}} \hfill \\ {{{\Sigma }_{{\mathbf{xX}}}}} \hfill & {{{\Sigma }_{{\mathbf{xx}}}}} \hfill \\ \end{array}} \right]} \hfill \\ \end{array} $$
Σ :

The covariance matrix of the process

Σ xx :

Submatrix of the covariance matrix Σ for variables j = gr, sm

Σ xX :

Submatrix of the covariance matrix Σ between variables j = gr, sm and j ≠ gr, sm

Σ XX :

Submatrix of the covariance matrix Σ for variables j ≠ gr, sm

Further, the conditional covariance matrix of variables j = gr, sm on variables j ≠ gr, sm is obtained as \( {{\varvec{\varSigma}}_{{\bf xx}}}-\varvec{\varSigma}_{{\bf xX}}^{{\bf T}}\varvec{\varSigma}_{{\bf XX}}^{{-{\bf 1}}}{{\varvec{\varSigma}}_{{\bf xX}}} \).

Appendix 2: Evaluating the optimal value of d gr,sm(k)

Assume \( {{\left( {\mu_j } \right)}_{{j\in \left\{ {1,2, \ldots, m} \right\}}}}=0 \) and \( {{\left( {\sigma_j } \right)}_{{j\in \left\{ {1,2, \ldots, m} \right\}}}}=1 \). Then,

$$ \begin{array}{*{20}{c}} {\Pr \left\{ {\left\{ {{{e}^{{0.5{{{({{T}_{{k,\text{gr}\left| {sm} \right.}}})}}^{2}}}}}\geqslant h\left( {{{d}_{{\text{gr,sm}}}}(k)} \right){{e}^{{0.5{{{({{T}_{{k,\text{sm}}}})}}^{2}}}}}} \right\}} \right\}=} \hfill \\ {\Pr \left\{ {0.5{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}\geqslant \ln \left( {h\left( {{{d}_{{\text{gr,sm}}}}(k)} \right)} \right)+0.5{{{({{T}_{{k,\text{sm}}}})}}^{2}}} \right\}} \hfill \\ {=\Pr \left\{ {{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}-{{{({{T}_{{k,\text{sm}}}})}}^{2}}\geqslant 2\ln \left( {h\left( {{{d}_{{\text{gr,sm}}}}(k)} \right)} \right)} \right\}} \hfill \\ \end{array} $$

Now since (T k , sm ,T k,gr| sm) follow a standard normal distribution \( {{\left( {\mu_j } \right)}_{{j\in \left\{ {\mathrm{gr}\text{,}\mathrm{sm}} \right\}}}}=0 \) and \( {{\left( {\sigma_j } \right)}_{{j\in \left\{ {\mathrm{gr}\text{,}\mathrm{sm}} \right\}}}}=1 \), hence (T k,gr| sm)2 and (T k ,sm)2 follow a χ 2 distribution with one degree of freedom. Then, if we assume that (T k,sm)2 is approximately equal to its mean, we have

$$ {{({T_{{_{{k,\mathrm{sm}}}}}})}^2}\propto E\left( {{T_{{_{{k,\mathrm{sm}}}}}}^2} \right)=E{{\left( {{T_{{_{{k\text{,}\mathrm{sm}}}}}}} \right)}^2}+\mathrm{Var}\left( {{T_{{_{{k,\mathrm{sm}}}}}}} \right)=1 $$
(A2.1)

Thus,

$$ \begin{array}{*{20}{c}} {\Pr \left\{ {{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}-({{T}_{{k,\text{sm}}}})2\geqslant 2\ln \left( {h\left( {{{d}_{{\text{gr},\text{sm}}}}(k)} \right)} \right)} \right\}} \hfill \\ {\propto \Pr \left\{ {{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}-E(T_{{k,\text{sm}}}^{2})\geqslant 2\ln \left( {h\left( {{{d}_{{\text{gr},\text{sm}}}}(k)} \right)} \right)} \right\}} \hfill \\ {=\Pr \left\{ {{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}-1\geqslant 2\ln \left( {h\left( {{{d}_{{\text{gr},\text{sm}}}}(k)} \right)} \right)} \right\}} \hfill \\ {=\Pr \left\{ {{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}\geqslant 2\ln \left( {h\left( {{{d}_{{\text{gr},\text{sm}}}}(k)} \right)} \right)+1} \right\}} \hfill \\ \end{array} $$
(A2.2)

Now, since \( {{\left( {{T_{{k,\left. {\mathrm{gr}} \right|\mathrm{sm}}}}} \right)}^2}\propto {\chi^2}(1) \), we have

$$ \Pr \left\{ {{{{({T_{{k\text{,}\mathrm{gr}\left| {\mathrm{sm}} \right.}}})}}^2}\geqslant 2\ln \left( {h\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)+1} \right\}=\int_{{2\ln \left( {h\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)+1}}^{\infty } {\frac{{{e^{{-\frac{t}{2}}}}{t^{{-\frac{1}{2}}}}}}{{\varGamma \left( {\frac{1}{2}} \right){2^{{\frac{1}{2}}}}}}} \mathrm{dt} $$
(A2.3)

Hence,

$$ \Pr \left\{ {{{{({T_{{k,\mathrm{gr}\left| {\mathrm{sm}} \right.}}})}}^2}-{{{({T_{{_{{k,\mathrm{sm}}}}}})}}^2}\geqslant 2\ln \left( {h\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)} \right\}\simeq \int_{{2\ln \left( {h\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)+1}}^{\infty } {\frac{{{e^{{-\frac{t}{2}}}}{t^{{-\frac{1}{2}}}}}}{{\varGamma \left( {\frac{1}{2}} \right){2^{{\frac{1}{2}}}}}}} \mathrm{dt} $$
(A2.4)

Similarly

$$ \begin{array}{*{20}{c}} {\Pr \left\{ {{{B}_{{\text{gr,sm}}}}\left( {\text{gr};{{O}_{k}}} \right)\geqslant {{d}_{{\text{gr,sm}}}}(k)} \right\}} \hfill \\ {=\Pr \left\{ {{{e}^{{0.5{{{({{T}_{{k,\text{gr}\left| {\text{sm}} \right.}}})}}^{2}}}}}\geqslant r\left( {{{d}_{{\text{gr,sm}}}}(k)} \right){{e}^{{0.5{{{({{T}_{{k,\text{sm}}}})}}^{2}}}}}} \right\}} \hfill \\ {\simeq \int_{{2\ln \left( {r\left( {{{d}_{{\text{gr,sm}}}}(k)} \right)} \right)+1}}^{\infty } {\frac{{{{e}^{{-\frac{t}{2}}}}{{t}^{{-\frac{1}{2}}}}}}{{\Gamma \left( {\frac{1}{2}} \right){{2}^{{\frac{1}{2}}}}}}} \text{dt}} \hfill \\ \end{array} $$
(A2.5)

Replacing the above equations in Eq. () results in

$$ \begin{array}{*{20}{c}} {V_{{i,j}}^{*}(N)\propto \left( {{{B}_{{\text{gr,sm}}}}\left( {\text{gr};{{O}_{k}}} \right)-\alpha V_{{i,j}}^{*}\left( {N-1} \right)} \right)\int_{{\left( {2\ln \left( {r\left( {{{d}_{{\text{gr,sm}}}}(k)} \right)} \right)+1} \right)}}^{\infty } {\frac{{{{e}^{{-\frac{t}{2}}}}{{t}^{{-\frac{1}{2}}}}}}{{\Gamma \left( {\frac{1}{2}} \right){{2}^{{\frac{1}{2}}}}}}} \text{dt}+} \hfill \\ {\left( {{{B}_{{\text{gr,sm}}}}\left( {\text{sm};{{O}_{k}}} \right)-\alpha V_{{i,j}}^{*}\left( {N-1} \right)} \right)\int_{{\left( {2\ln \left( {h\left( {{{d}_{{\text{gr},\text{sm}}}}(k)} \right)} \right)+1} \right)}}^{\infty } {\frac{{{{e}^{{-\frac{t}{2}}}}{{t}^{{-\frac{1}{2}}}}}}{{\Gamma \left( {\frac{1}{2}} \right){{2}^{{\frac{1}{2}}}}}}} \text{dt}+\alpha V_{{i,j}}^{*}\left( {N-1} \right)} \hfill \\ \end{array} $$
(A2.6)

Now by solving the equation \( \frac{{\delta {V_{i,j }}(N)}}{{\delta {d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)}}=0 \), the following equation is obtained.

$$ \begin{array}{*{20}c} \left( {{B_{\mathrm{gr}\text{,}\mathrm{sm}}}\left( {\mathrm{gr};{O_k}} \right)-\alpha V_{gr,sm}^{*}\left( {N-1} \right)} \right)\frac{1}{{\sqrt{{\left( {\ln \left( {r\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)+1} \right)}}}}= \hfill \\ -\left( {{B_{\mathrm{gr}\text{,}\mathrm{sm}}}\left( {\mathrm{sm};{O_k}} \right)-\alpha V_{\mathrm{gr}\text{,}\mathrm{sm}}^{*}\left( {N-1} \right)} \right)\frac{1}{{\sqrt{{\left( {\ln \left( {h\left( {{d_{\mathrm{gr}\text{,}\mathrm{sm}}}(k)} \right)} \right)+1} \right)}}}} \hfill \\\end{array}$$
(A2.7)

Finally, the optimal value of d gr,sm(k) is determined by solving this equation numerically or by a search algorithm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezhad, M.S.F., Niaki, S.T.A. A heuristic threshold policy for fault detection and diagnosis in multivariate statistical quality control environments. Int J Adv Manuf Technol 67, 1231–1243 (2013). https://doi.org/10.1007/s00170-012-4561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4561-x

Keywords

Navigation